y=x^2/40+31x/40+4/5

Simple and best practice solution for y=x^2/40+31x/40+4/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=x^2/40+31x/40+4/5 equation:


x in (-oo:+oo)

y = (x^2)/40+(31*x)/40+4/5 // - (x^2)/40+(31*x)/40+4/5

y-((x^2)/40)-((31*x)/40)-(4/5) = 0

(-31/40)*x-((x^2)/40)+y-4/5 = 0

y-1/40*x^2-31/40*x-4/5 = 0

DELTA = (-31/40)^2-(-1/40*4*(y-4/5))

DELTA = 1/10*(y-4/5)+961/1600

1/10*(y-4/5)+961/1600 = 0

(1/10*1600*(y-4/5))/1600+961/1600 = 0

1/10*1600*(y-4/5)+961 = 0

160*y+833 = 0

(160*y+833)/1600 = 0

(160*y+833)/1600 = 0 // * 1600

160*y+833 = 0

160*y+833 = 0 // - 833

160*y = -833 // : 160

y = -833/160

DELTA = 0 <=> t_1 = -833/160

x = 31/40/(-1/40*2) i y = -833/160

x = -31/2 i y = -833/160

( x = ((1/10*(y-4/5)+961/1600)^(1/2)+31/40)/(-1/40*2) or x = (31/40-(1/10*(y-4/5)+961/1600)^(1/2))/(-1/40*2) ) i y > -833/160

( x = -20*((1/10*(y-4/5)+961/1600)^(1/2)+31/40) or x = -20*(31/40-(1/10*(y-4/5)+961/1600)^(1/2)) ) i y > -833/160

y-(-833/160) > 0

y+833/160 > 0

y+833/160 > 0 // - 833/160

y > -833/160

x in { -31/2, -20*((1/10*(y-4/5)+961/1600)^(1/2)+31/40), -20*(31/40-(1/10*(y-4/5)+961/1600)^(1/2)) }

See similar equations:

| 3x+10y=77 | | 80-4x=-9-8x | | 5x-29=4 | | -6-6=9-9x | | 7x-3+8x=6x-9 | | 4x-7y=-23 | | 3n(2m+9)=0 | | 7.7/0.011 | | 21x+x=9 | | (5x-1/4)=3 | | y-5/2=3x | | (5x-2/2)=3 | | 4x+(4x/x+1)-4(x+1) | | 12-2=9 | | 5x-4/3=5 | | 6x+11x=116+x | | 12x-2=11x+5 | | 39w^2-23w=0 | | 11q^2-27q=0 | | 4n-6=80710541now | | 3x+3=2x-6 | | 4x=-6y+8 | | 4+x^2+-4x=0 | | 6+x(3)=15 | | 2x^2+6-10=x^2+6 | | 3x^2+bx+x+1=0 | | (x^2+3x-6)/(x+1) | | y=20-2 | | (2x-9/3)=2 | | bx+x= | | 7(2y-5)/3=3y-5 | | 20/8+(-4) |

Equations solver categories